
Analysis of Perl’s Taint Mode

Andrew Hurst <abhurst@ucdavis.edu>

June 8, 2004

Abstract

A program that takes no input and produces
no output is not a very useful program. Un-
fortunately, as soon as a program starts tak-
ing input from users a potential security hole
is opened where specially crafted data could
be given by the user. If the programmer did
not think to check for malicious input, secu-
rity violations could result. This paper will
examine the approach that Perl provides to
ensure that the data given by users of Perl
programs is moderately secure, and how the
requirements of the program affect what se-
cure means and how it is tested for.

1 Overview

In the security climate of today, program-
mers can no longer assume that people will
follow the rules just because they are there.
This holds doubly true in web-enabled appli-
cations, where the feeling of anonymity en-
courages some people to try to find and ex-
ploit software weaknesses. Users will throw
all sorts of data at a program hoping to cause
it to crash or do something it wasn’t supposed

to.

One example might be a web-based email
tool that takes the name of a mailbox as in-
put. If the programmer assumed that the
user would only enter valid mailboxes, then
the program might not handle the case where
a user entered /etc/passwd as the name of
their mailbox. Thus the web-based email pro-
gram now becomes a web-based file browser
for the server.

To catch these types of errors, program-
mers have to be rigorous in the checking of
any and all input coming from users. Of
course, there are many more sources of input
to programs than just user input; environ-
ment variables, command line options, and
input from a configuration file all could con-
tain malicious data.

The popular programming language Perl
has provided a runtime option for helping
to thwart these types of attacks by provid-
ing taint mode. When perl scripts are run
with the -T flag, input derived from outside of
the perl program will be flagged as “tainted”,
and will have to be “untainted” before it can
be used as input to another program or sys-
tem call. The authors of [9] sum it up nicely

1

#!/usr/bin/perl

program1.pl

given a filename, email it to myself. "Unsafe" version.

my $file = $ARGV[0];

‘mail -s "Re: Your File" andrew\@hurstdog.org < $file‘;

exit 0;

Figure 1: An example of using tainted data

with the statement “you may not use data
derived from outside your program to affect
something else outside your program”.

It should be clarified here that this is a tool
intended to help programmers protect their
programs from users. Taint mode will not
help a programmer protect against other pos-
sibly hostile programmers that will use their
code. It is much too easy for other program-
mers to just falsely untaint the data. This is
explained more in Section 3.5.

A simple example might help to clarify
the intent and use of taint mode. Figure
1 contains a short perl program that reads
in a file and emails it to the author at
andrew@hurstdog.org.

Now before we can determine if this pro-
gram is secure, we need to define what se-
cure means. Assume that for this program
the requirements are that it can only email
files in the current directory or below, and
that it should email the file to only myself
with no side effects (it doesn’t cc it to some-
one else, say, email a different file, or change
the filesystem).

With these assumptions, there are two ba-
sic vulnerabilities in the program as it is writ-
ten: (1) the filename given on the command

line is accepted without question, and (2)
the environment’s PATH value is trusted. Be-
cause the filename is not checked, a file that
the programmer did not intend to be emailed
could be sent, for instance /etc/passwd or
another file not in the users current directory
or below. Trusting the PATH environment
variable means that an attacker could mod-
ify the PATH to contain a directory of their
choice early in the search order, and replace
the mail program in that directory with one
of their own. Thus they could get the author
to email files that were meant to be emailed,
execute code that was not meant to be exe-
cuted, or any other of a number of dirty tricks
that could be thought up.

Both of these vulnerabilities will be caught
by running the script under taint mode,
but they won’t be fixed. When the -T flag
is added to the first line of the script and
re-run, the program execution is halted
and the error Insecure $ENV{PATH} while

running with -T switch at program1.pl

line 4 is displayed. Perl is complaining that
the PATH environment variable is being relied
upon by the script, yet it was supplied from
outside of the program. This can be fixed by
setting the path to a constant value.

2

#!/usr/bin/perl -T

program2.pl

given a filename, email it to myself. "Safe" version.

my $file = $ARGV[0];

get rid of any ’..’ that might be in the filename

$file =~ s|\.\.||g;

only use the non-absolute version of the filename.

$file =~ m|^/*(.*?)$|; # line 8

my $safe_file = $1;

no need for the PATH to be trusted, Set it to a known value.

$ENV{PATH} = ’/usr/bin’;

send myself the email

‘mail -s "Re: Your File" andrew\@hurstdog.org < $safe_file‘;

exit 0;

Figure 2: A more secure version of the program in Figure 1

After fixing that error, when run
again the execution still halts but with
the error Insecure dependency in

‘‘ while running with -T switch at

./program1.pl line 5. This is due to the
$file variable being tainted, by virtue of
it gaining its value from $ARGV[0], which is
tainted because it was supplied by the user.
Just having $file tainted was not enough
to trigger this error, however. Because it was
used in the backtick operators (‘‘), it was
fed to a shell on the system. This is a big
vulnerability. To fix this I untainted $file

by doing some checks with perl’s regular
expression support, which allowed me to run
the program successfully under taint mode.
A more secure version of the program in
Figure 1 is shown in Figure 2.

Thus by running the program under taint
mode, we were able to determine unsafe prac-

tices and places that users could inject mali-
cious data into the program. It is important
to notice in the script above that I had to
untaint the data myself. Thus if there were
any bugs in my untainting, or I didn’t untaint
it effectively enough, the program could still
be insecure. In fact, the “secure” program
in Figure 2 is still insecure given the earlier
requirements.

If the user supplies a filename of
\/etc/passwd it will pass the tests above and
email the file /etc/passwd. For more on this
see Sections 3.5 and 4.2.1.

2 Related Work

Much work has been done in this area,
from other languages that implement similar
mechanisms as perl (Section 2.1) to program

3

analyzer’s that run separately from the regu-
lar development cycle to look for vulnerabil-
ities (Section 2.2).

2.1 Ruby

Along with Perl, the Ruby programming lan-
guage has a taint checking mechanism built
into it [8]. Ruby’s implementation works by
having multiple Safe Levels that a program
can run under. At each of the five safety lev-
els different amounts of security checks are
performed; from no checks (Safe Level 0) to
essentially requiring that all loaded code runs
in a sand box (Safe Level 4 — similar to using
the Safe module in Perl’s CPAN).

Ruby’s Safe Levels provide a much finer-
grained control over the running of scripts
than Perl’s taint mode. Safe level 1 in Ruby
is equivalent to running with the -T flag in
perl. The higher safety levels add checks
that can disallow operations like loading li-
braries from world-writable locations, control
whether newly created objects are tainted,
and change all untainted objects to be read-
only [8].

The other commonly used scripting lan-
guages Python and PHP do not include taint-
like checks.

2.2 Format String Vulnerabili-
ties

Perl’s taint checks are similar to much of
the format string vulnerability work that has
gone on in recent years. For a little back-
ground, format string vulnerabilities are ex-

printf(buf);

Figure 3: A possibly insecure call to
printf()

ploited by insecure calls to the C program-
ming language’s printf() and related func-
tions [7]. These insecure calls would be struc-
tured such that some of the user’s input to the
program is used directly in the format string
given to printf(). These vulnerabilities are
not limited to the C language in particular,
rather they are possible in any programming
language that includes a printf()-like func-
tion and has programmers that make mis-
takes occasionally.

Figure 3 contains an example of this. If
buf contains format specifiers like %s it will
attempt to read these arguments off of the
stack. If the user (as opposed to the pro-
grammer) is the one who supplied the data
in buf, then most likely any format specifiers
that are in the string will not have associated
variables on the stack to print out. Thus the
program will crash or will not print out the
data that was intended.

An attacker that knows this can craft a for-
mat string specifically to provide data about
the system that the programmer didn’t in-
tend to share, or get the program to run code
for the attacker.

The authors of cqual solved this prob-
lem in C by using a type-based approach
that is similar in spirit to taint mode in perl
[7]. Their approach extends the type sys-
tem of C at compile time (note that this
isn’t the normal developmental compile-time,
but a separate compilation run to find er-

4

rors using cqual) to include the tainted and
untainted type qualifiers. Because most un-
modified C programs do not include these
type qualifiers, the authors include with their
system a set of annotated library functions
for C that make use of the tainted and
untainted type qualifiers. E.g. to note that
getchar() returns a tainted int.

To determine if any function calls within
the program are insecure, the system pro-
cesses a generated Abstract Syntax Tree of
the program to generate a database of type
constraints which are solved to look for any
inconsistencies.

For instance, assume a programmer calls
printf(buf) in her program, and the set
of annotated library functions notes that
the first argument to printf should be an
untainted char *. When cqual gets the
generated abstract syntax tree, it will notice
the call to printf, and the requirement for
untainted input. cqual will then search the
type constraint database to make sure that
the variable buf was not derived from tainted
input.

Intuitively, this approach produces no
overly difficult problems. But when the type
system of C is added to with type casts,
pointers, and void * is taken into account,
the problem becomes much more difficult.
This highlights one benefit of perl’s taint
mode: because taint mode tracks taintedness
through a flag on each expression, it doesn’t
care what the expression does, just whether
or not the expression contains a tainted value
or not. This will be examined more in Section
3.2.

Another approach to find security vul-

nerabilities in programs was used in Splint
by adding annotations (essentially format-
ted notes within the comments of the pro-
gram that include information about the vari-
ables and functions within it) [6]. Splint
analyzes a program statically to determine
possible security vulnerabilities through un-
safe coding practices and annotations pro-
vided within the source. For instance if a
comment /*@untainted@*/ occurs before an
argument in a function declaration, it means
that that function requires untainted data. If
during Splint’s analysis of the program it no-
tices that it is possible that tainted data can
be passed to that function in the annotated
argument, it will raise an error.

Splint does much more than just analyze
for string format vulnerabilities and tainted-
ness, however. It includes options for check-
ing buffer overflows and adding what are
essentially programming-by-contract restric-
tions to C programs.

Because Splint works by statically analyz-
ing the program, there are limitations to what
it can do due to undecidable problems. Taint
mode and cqual get around this by analyz-
ing at runtime, and using type checks (which
don’t include as many undecidable problems
as static analysis) respectively.

3 Details

3.1 The Intent

Before we get into the details of taint mode,
it would behoove us to give it some context
by going into the intent of this feature. Taint

5

mode was not designed to be the be-all end-
all of perl security. Its goal in not to catch
every possible error that a program can make,
but only to catch the stupid ones.

As the authors of the perlsec documenta-
tion so eloquently put it:

The tainting mechanism is intended
to prevent stupid mistakes, not to
remove the need for thought.[4]

Think of taint mode as an airbag for your
perl programs. Just because your car has an
airbag does not mean that you don’t pay at-
tention when you drive. Nor does it mean
that you don’t care if you get into an acci-
dent or not. But if there is an accident it is
nice that the airbag is there to do its part.

That is Perl’s taint mode, a tool to help
you write secure programs, but not the only
help you’ll ever need.

Related to this, taint mode will not protect
you against malicious library writers or other
programmers that use your program. As de-
scribed in section 3.5 it is much too easy to
work around if you have access to run arbi-
trary code to rely on this to protect your pro-
gram from other programmers.

3.2 Determining Taintedness

As alluded to above, Perl’s taint checking is
a runtime check. As the program is run-
ning, each expression carries with it a flag
that marks whether it contains tainted data
or not. The taintedness of an expression is
given by the taintedness of the variables and
sub-expressions that make it up. However,

the rhs reduces to 2*1

no matter what $t is.

$num = 2 *

(2 - 1 /

((0 * $t) + 1)

);

Figure 4: An example of over-zealous tainting

by design, the Perl interpreter is not smart
about determining taintedness.

Rather than parsing each expression to see
if all of the values in it affect the final value
of it, if any of the variables in the expression
are tainted the whole expression is marked
as tainted [4]. This is done for implemen-
tation ease. In security related concerns it
is almost always better to have a few minor
false-positives than let any false-negatives get
through.

For instance, in Figure 4 if $t contains
tainted data then the entire right-hand-side
of the expression will be marked tainted —
and thus $num will be as well — irrespective
of the fact that the value of $num is not de-
pendent on the value of $t.

But how do we determine if $t is tainted in
the first place? This is done by tracking the
source of the data. As was mentioned earlier,
any data from outside the program is auto-
matically treated as tainted. This includes
data from files, command line arguments, en-
vironment variables, locale information, and
the return values of some system calls (read-
dir() and readlink(), among others) [4].

In Figure 1 the variable $file is tainted
because its value is derived from @ARGV, the

6

#!/usr/bin/perl -T

Perl only taint checks lines

that get executed

if(0) {

$to = ’andrew@hurstdog.org’;

$what = $ARGV[0];

‘mail -s "busted" $to < $what‘;

}

else {

print "OK\n";

}

Figure 5: A program that taint checks cor-
rectly, even though it contains possibly inse-
cure code.

array of arguments to the perl program.

3.3 When Taint Checks Occur

Few perl programs would ever run success-
fully under taint mode if anything possibly
tainted in the program caused it to stop run-
ning irrespective of whether the unsafe code
got executed or not. Which is probably just
as well, because to implement that type of
checking the Perl interpreter would proba-
bly never finish analyzing any non-trivial pro-
gram for control-flow paths to see if those
statements could be executed!

Thus Perl only checks to see if a specific
expression or variable contains tainted data if
the program attempts to use it in an unsafe
matter. Figure 5 contains a program very
similar to program1.pl in Figure 1, but the
insecure lines are set within an unreachable
part of the program. When run, the program

in Figure 5 runs correctly and outputs the
string “OK” with no taint errors stopping ex-
ecution.

The unsafe code is never run, and thus the
program is never halted with errors.

3.4 Tainted Arguments

Any command that modifies files, directories,
or processes, or invokes a sub-shell will fail
with a taint check error if that command was
issued with tainted data. This is to ensure
that programs will not have unintended af-
fects on the system in which they run. As an
exception to this, the print and syswrite

commands (and related, like printf) are not
checked for tainted arguments.

To understand why the print and
syswrite commands are not part of the
group of functions that require untainted ar-
guments, you have to know how localization
works in perl.

When localization is turned on using the
locale pragma, extra processing of strings
happens throughout the program. This af-
fects string sorting, comparing, and convert-
ing to and from numbers. Not all languages
use the same alphabet as English, and not all
sort the same. As well, some languages use
‘.’ as a decimal point, others use ‘,’. Thus
when perl is converting from a number to a
string, it needs to figure out how to write the
decimal point.

This is done by reading figuring out the
value of LC NUMERIC for the current locale.
LC NUMERIC is one of a number of locale cat-
egories read from locale configuration files
based on the locale the program is running

7

under. Because these values are read from
external configuration files, their values are
tainted [3].

The process of printing out some text when
taking locale into account works as follows:

1. A command like print("PI is almost

exactly " . 22/7); is issued. Note
that this line contains purely constant
(untainted) data at this point.

2. Perl computes the value of 22/7 and
converts it to a string using the value
of LC NUMERIC to determine the deci-
mal point character. The string value
of 22/7 is now tainted, as it used input
from an external source to determine its
value.

3. The string value of 22/7 is appended
to the original string, and fed as an ar-
gument to print(). Note that the full
string is tainted now.

4. print() prints the value of the string to
the screen.

Were perl to ensure that no tainted val-
ues could be given as arguments to print(),
when a user was running under use locale;

they would never be able to print anything.
Anything they tried to print would become
tainted after they could do anything to pre-
vent it, and before it was passed the print()
function. Thus no print commands would
succeed. Note that other variables than just
LC NUMERIC are used when locale is in effect,
so this applies to more than just string argu-
ments that contain numeric computations.

As an example of a function that requires
untainted arguments, use mkdir(). This
function works just like the shell command
mkdir and creates a new directory with the
name of the argument given to it. Were
this function to not require untainted argu-
ments, users of programs that made use of
mkdir() could possibly create arbitrary di-
rectories. This would be even more of a prob-
lem if the program was running setuid as an-
other user.

3.5 Untainting

If there were no way to untaint variables, then
programs that run under taint mode would be
rather useless. They couldn’t run any out-
side commands, read configurations from a
file and act on them, or do a number of use-
ful things. For this reason there is a method
to untaint variables.

To untaint a variable, you must use Perl’s
regular expression support with capturing.
Line 8 in Figure 2 contains a match against
the user-supplied filename. Within this
match filenames that are considered valid are
captured between the parenthesis.

On line 9 of the same program the vari-
able $safe file gets the value of the regular
expression capture.

By requiring this method to untaint vari-
ables, perl is encouraging you to check the
input to your program. Referring back to
the intent of taint mode (Section 3.1), this
method is not foolproof, however.

Figure 6 contains another version of the
program in Figure 2. This program is defi-
nitely insecure given the requirements for the

8

#!/usr/bin/perl -T

program3.pl

given a filename, email it to myself. "Falsely Safe" version.

my $file = $ARGV[0];

$file =~ /(.*)/;

my $safe_file = $1;

$ENV{PATH} =~ /(.*)/;

$ENV{PATH} = $1;

‘mail -s "Re: Your File" andrew\@hurstdog.org < $safe_file‘;

exit 0;

Figure 6: An example of working around taint mode

emailing program. By using regular expres-
sion that capture the full input of whatever
is given to the program, the programmer is
in essence laundering the data to untaint it.

Because no checks are done on the data,
the program is no more secure than if it were
run without the -T flag.

3.6 Forced Taint Mode

When perl detects that it is running with dif-
fering real and effective user or group id’s (i.e.
setuid or setgid scripts), it forces running un-
der taint mode. This is done to add an extra
level of security for programs that need it the
most.

To ensure that this feature is used, there
is no way to turn off taint mode once it has
been enabled for a program. Were there a
way to do this, malicious programmers could
just turn off taint mode first thing, then get
the program to run setuid or setgid.

4 Evaluation

4.1 Benefits

4.1.1 Flexibility

Because taint mode does not decree what
makes secure data or not — it merely flags
possibly insecure data — it is very flexible.
One person may use it to make sure that they
check all given email addresses are valid, and
another may use it to ensure that they run
with a secure PATH environment variable.

By relying on the user to do the checks, any
type of data that a perl program can read in
can be taint checked, and later untainted.

This is also taint mode’s greatest weakness,
however. This is detailed more in Section
4.2.1

4.1.2 Ease of Implementation

Section 3.2 explains the simple algorithm
that perl uses to propagate taintedness be-
tween expressions. Because of the simplic-

9

ity of this algorithm, the implementation of
taint mode in perl is very straightforward. No
difficult algorithms to determine type propa-
gation, and no need to figure out how that
taintedness with propagate.

A flag to mark if a given expression is
tainted when that expression is generated,
and a check to see if that flag is set on po-
tentially unsafe system calls is all that is
needed. Bugs due to complexity will be virtu-
ally nonexistent in the implementation. The
major source of bugs for taint mode will be
bugs of omission, described in Section 4.2.2.

4.2 Detriments

4.2.1 Only as Good as the Program-
mer

As mentioned in Section 4.1.1, each program-
mer is free to determine how to untaint and
check the input that is provided to their pro-
gram. Programmers come in varying degrees
of skill, however, and one may write much
stronger checks for the same input than an-
other.

This points again to the fact that taint
checking is not a panacea, but merely an an-
tibiotic of sorts.

4.2.2 Implementation Bugs

Almost no program is without bugs, and perl
is no exception. Taint mode has been known
to have bugs of omission [2]. Possible sources
of tainted data have been ignored in previ-
ous implementations of perl, and system calls
that should require untainted data have not

checked their arguments as well.
It is reasonable to assume that there prob-

ably still are bugs in perl’s implementation of
taint mode.

5 Similarity to the Biba

Integrity Model

Comparisons of taint mode to formal secu-
rity and integrity models are useful because
it allows us to leverage the work done on the
models to apply to taint mode.

By looking at the properties of the Biba
and Bell-LaPadula Models, its easy to see
that taint mode applies more to the Biba
model, than to the Bell-LaPadula. This is be-
cause Bell-LaPadula is more concerned with
security and access to data, and Biba is more
concerned with the integrity of data. Taint
mode does not restrict access to data based
on if you have permissions, but only if the
data is trustworthy or not. Thus the Biba
model is a better fit.

5.1 Integrity Levels

To model taint mode in the Biba system, we
create two integrity levels: Tainted and Un-
tainted. Untainted is the more trustworthy
of the two, so we make it the higher level.
Untainted < Tainted (read: Untainted dom-
inates Tainted) in this model, as shown in
Table 1.

The obvious case of classification is vari-
ables that are either tainted or untainted.
Any variable that contains tainted data
would be at the Tainted integrity level, and

10

Untainted (U) mkdir(), chown(), ‘ ‘, untainted variables, . . .

Tainted (T) %ENV, @ARGV, tainted variables, . . .

Table 1: A Biba Integrity Model integrity graph for taint mode.

any variable that contains only untainted
data would be at the Untainted integrity
level.

To handle the case where taint check fail-
ures can occur when calling a function in
an unsafe manner (i.e. an attempt to call
system() with a tainted parameter) we clas-
sify all functions that require untainted data
at the Untainted level.

Functions that return tainted values (and
therefore the return values of those functions)
are classified at the Tainted level.

Some functions however are merely carri-
ers of tainted or untainted values. Examples
of these are +, -, ., map(), and user-defined
functions, among others. These functions act
as the sum of the expressions that make them
up, and whether or not they return tainted or
untainted data depends on the data fed into
them.

For example the return value of an iden-
tity function id() that just returns the value
passed into it, would be classified at the in-
tegrity level of its arguments.

5.2 Weak Tranquility

But before we can fully model taint mode in
the Biba model, we need to take into account
tranquility. Strong Tranquility as it applies
to the Biba model states that integrity levels
may not change throughout the life of the sys-

tem [5]. As tainted variables without the abil-
ity to untaint them would make taint mode
rather useless, we cannot apply it here.

Rather, we will apply Weak Tranquility,
which notes that security levels in a system
may change as long as they do not change in
a way that violates the security policies of the
system.

This issue arises because simple reading
and writing does not fully capture the seman-
tics of expressions in perl, due to the restric-
tions on read in the low-water-mark policy.

Assume perl’s assignment operator (=) was
treated as a read between two variables, then
once a variable was tainted it would never be
able to become untainted. Take the example
of an assignment between the subject $s and
the object $o, $s = $o.

The integrity level of $s is given by the
minimum of the integrity levels of $s and $o

[5]. If $s is at the Tainted level and $o is
at the Untainted level, $s would end up at
the Tainted level after the assignment. This
does not conform to the semantics of perl,
which would leave $s untainted after this as-
signment.

To handle this case, I’ve used an implemen-
tation of weak tranquility to go along with
read and write: assign. This operation fits
into the model as follows (hereafter referred
to as the assignment rule):

11

Given o1, o2 ∈ O. If o1 assigns o2,
then i′(o1) = i(o2) and o1 = o2,
where i′(o1) is the object’s integrity
level after the assignment.

Using the assignment rule, we can now suc-
cessfully untaint data by using the capture
operators as described near the end of the
next section.

5.3 Following The Rules

For the purposes of this application of the
Biba model, we consider read to be when a
variable (or the return value of a function) is
used in an expression; the subject doing the
reading would be the expression the variable
appears in, excluding anything to the left of
the assignment operator. (See Table 2 for
some examples).

Writes would occur when a variable is
passed as an argument to a function; the ob-
ject getting written to would be the function,
the subject doing the writing would be the
variable.

Assign is used only for the assignment op-
erator, and works as described above.

The terms subject and object in the Biba
Model rules will be used interchangeably with
the term “expression”. This corresponds to
the expressions used internally in the parse
tree of the perl interpreter, and thus the ex-
pressions that contain a tainted flag to track
if they contain tainted data or not.

Using the low-water-mark policy, we can
show that when a tainted variable is used in
an expression (i.e. the variable is read), the
resulting expression will be tainted as well.

The specific rule of the low-water-mark
policy that provides this is rule 2, which
states: If s ∈ S reads o ∈ O, then i′(s) =
min(i(s), i(o)), where i′(s) is the subject’s in-
tegrity level after the read [5].

For example, look to Example 4 in Ta-
ble 2. The security level of the full expres-
sion after the expression is executed will be
min(i($b), i($c)). Because of there only be-
ing two integrity levels, this is trivial to solve.
If either i($b) or i($c) is at the Tainted level,
then i′($b+$c) will be as well. If both are at
the Untainted level, then i′($b+$c) will end
up Untainted.

Integrity violations cannot occur by read-
ing alone, due to the design of the Biba policy.
If an object at a higher level reads an object
at a lower level, then both objects merely end
up at the lower level. A read from a lower
level of a higher level causes the lower level
to stay at the lower level.

Writes, on the other hand, can cause in-
tegrity violations when a write from a lower
level to a higher level is attempted. This case
will coincide with a taint check failure.

Look to Table 2 again, but this time check
Example 2. In this case the programmer is
attempting to call a function to create a new
directory with the name stored in the vari-
able $s. This corresponds to a write from
the subject $s to the object mkdir().

Recall that mkdir() would be classified at
the Untainted level because it has the ability
to modify the system external to the running
program.

Rule 2 of the Biba Model states: s ∈ S can
write to o ∈ O if and only if i(o) ≤ i(s) [5].

If $s contained tainted data, an integrity

12

Example Expression Action Subject Object Notes

1 $o read $o $o Basic Read
2 mkdir($s) write $s mkdir() Function call
3 $s = $o assign $s $o Basic assignment
4 $b + $c Two reads, two writes shown in the the following

rows:
4a $b read $b + $c $b First variable in the ex-

pression
4b $c read $b + $c $c Second variable in the ex-

pression
4c $b + write $b + First argument to +

4d + $c write $c + Second argument to +

Table 2: Reading and writing under the Biba Integrity Model as applied to taint mode.

violation would occur, corresponding to a
taint check failure. This is because the
i($s) < i(mkdir()), and thus $s cannot write
to mkdir().

Lastly, there is a set of variables that are
always at the Untainted security level, and
these are the regular expression capture vari-
ables $1, $2, $3, and so on. These variables
are set by the Perl interpreter automatically
after a capture is performed in a regular ex-
pression.

By using the assign primitive described
above and the capture variables, program-
mers may raise the integrity level of vari-
ables as described in Sections 3.5 and 5.2.
This is similar to de-classifying documents in
the Bell-LaPadula model, though the levels
change in the reverse direction.

6 Further Work

6.1 Taint Library

As covered in section 4.2.1, checks done to
untaint variables are only as good as the pro-
grammer writing those checks. For this rea-
son it would be useful if there were a library
of known good taint checks to help increase
the security of the general populations pro-
grams.

When one was writing a program, they
could look up untainting regular expressions
from this library and be sure that their im-
plementation was secure. Though therein lies
the classical problem: what is secure? There
are so many possible uses of perl that might
require untainting, it is infeasible to think
that a library of these would be possible to
build.

However there is a large body of code in
perl’s CPAN [1], and fledgling programmers
have more than enough code to look over

13

and learn how to do secure programming cor-
rectly. With the caveat that they may have
to modify it to fit their particular definition
of secure, it could be very useful for many
programmers.

6.2 Breaking out of Scripting
Languages

The only languages that I have come across
with taint checks or taint-like features are
scripting languages. It would be interesting
to look into if this would be possible — or
even applicable — for languages such as Java
to implement, that compile to bytecode and
are run through an interpreter.

As well, implementing a compiler extension
for certain languages to track the taintedness
of variables could provide some useful infor-
mation as well, in terms of runtime efficiency
and implementation difficulty.

Hacking the compilers and inserting code
might not be necessary, however, if tools such
as AspectJ were used. A basic taint-checking
infrastructure could be built to be used with
Java applications, with no changes necessary
to the underlying compilers.

Whatever the tool used, the major obsta-
cle to overcome to implement this in non-
interpreted languages would be propagating
taintedness. In interpreted languages, you
have access to every expression as it occurs,
so you can just track it as the program exe-
cutes. See section 3.2 for more on how it is
done in perl.

In compiled languages, you don’t have the
luxury of inspecting expressions at runtime.

One way around this would be to try writing
a compiler that added an extra line of code
near each assignment statement to update a
global struct or object that tracks the taint-
edness for every variable in the program.

This sounds like a very memory and cpu
intensive method, and probably wouldn’t be
useful for anything more than basic quality
assurance and testing.

7 Conclusion

No programmer writes (useful) programs free
of bugs, and when these bugs can be exploited
to break the security of the program, unsatis-
factory consequences can occur. Perl’s taint
mode is a big step in the right direction to
help programmers ensure that they write pro-
grams free of security related bugs, but it is
definitely not a panacea.

Taint mode only checks for certain types
of bugs, those that may be triggered by mali-
cious user input. There is still the possibility
that the programmer may create temporary
files unsafely, save data to the wrong places,
or just not write the program according to
the specifications. All of these problems can
occur whether running under taint mode or
not.

Taint mode just gives a little helping hand
to help the weary programmer not make as
many fatal mistakes. In that sense, this se-
curity feature is a resounding success.

14

References

[1] Cpan - comprehensive perl archive net-
work.

[2] Perl core documentation - perl56delta.

[3] Perl core documentation - perllocale.

[4] Perl core documentation - perlsec.

[5] Matt Bishop. Computer Security: Art
and Science. Addison Wesley Profes-
sional, 2003.

[6] David Evans and David Larochelle.
Improving security using extensible
lightweight static analysis. IEEE Soft-
ware, 19(1):42–51, January/February
2002.

[7] Umesh Shankar, Kunal Talwar, Jeffrey S.
Foster, and David Wagner. Detecting for-
mat string vulnerabilities with type qual-
ifiers. pages 201–220.

[8] Dave Thomas and Andy Hunt. Program-
ming Ruby: A Pragmatic Programmer’s
Guide. Addison-Wesley, 2000.

[9] Larry Wall and Mike Loukides. Program-
ming Perl. O’Reilly & Associates, Inc.,
2000.

15

