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Abstract

There is a significant rise in the amount of self-referential data
available in distributed data stores. Like most large data stores, we
would like to use data mining techniques to gain knowledge based on
this data. This paper examines algorithms and techniques for data
mining such large, distributes stores of self-referential data, from the
use of basic graph algorithms, to mining for new knowledge, to gen-
eral characterization of the graph. Techniques are illustrated using
examples from network intrusion detection, genome processing, and
web searching.

1 Introduction

Data mining is the process of searching data for patterns or for re-
lationships between the data that are not obvious from the data it-
self. In general, data mining is done to find 1) associations, where
one data point is connected to another data point, 2) sequences (or
paths), where one data point leads to another data point or a causality
relationship or association can be drawn between data points, 3) clas-
sification, or finding patterns within data points, 4) clustering, finding
related groups of data points, or 5) forecasting, or finding associations
that will let us make predictions about future events from current data
sets.
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Many commercial companies build applications for mining data
in business enterprise systems, such as these found in a brief Google
search: SPSS Inc., Salford Systems, Oracle Inc., and Thinking Ma-
chines, Inc. However, general business data mining systems are be-
yond the scope of our paper, so we will generally ignore these from
here on.

We are interested in what knowledge can be ascertained from a
large store of distributed data given the constraint that the data is
self referential. Such data can be found in applications such as mining
network connection data for intrusion detection purposes, or finding
important relationships between genome sequences. This data can
be conceptually modeled as a graph. For example, GrIDS modeled
network connection data as a graph, and used subgraph matching to
identify patterns of intrusive activity [33]. Such a model allows us
to transcend the traditional data mining model examining similarity
between data items or the order in which data items occur. Instead,
it allows us to derive knowledge on the similarities between the rela-
tionships of data items.

A basic example of self-referential data can be seen in the following
table (named PEOPLE):

NAME1 NAME2 RELATIONSHIP
Alice Bob Husband
Bob Alice Wife
Alice Charlie Daughter

Charlie Alice Mother
Bob Charlie Daughter

Charlie Bob Father
Alice David Brother
David Alice Sister

One can’t see the relationship between Bob and David given any
single row in the table, however if we join the table to itself with the
SQL statement SELECT a.name1, a.relationship, b.relationship,
b.name2 FROM people a, people b WHERE a.name2=b.name1, we get
the following table:
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a.NAME1 a.RELATIONSHIP b.RELATIONSHIP b.NAME2
Alice Husband Wife Alice
Alice Husband Daughter Charlie
Bob Wife Husband Alice
Bob Wife Daughter Charlie
Bob Wife Brother David

...
Here we can see that David is the brother of Bob’s wife (making

them Brothers-in-law). The important point here is that when we
joined the table with itself (the self-referential property), we were able
to deduce information that wasn’t in the base table. The problem
arises however that, in this simple example, the resultant table would
have contained 18 rows, a number that grows at the rate of O(nm)
where n is the number of rows and m is the number of times that it
is joined to itself.

For this paper we will examine what algorithms and techniques
exist, have been proposed, or need to be developed, that exploit such
self-referential data in a distributed data store. We will concentrate
on the distributed nature of such tasks. We will briefly review in-
teresting research results pertaining to distributed graph algorithms,
particularly because they provide useful insights as to the algorith-
mic complexity of operations on distributed self-referential data. For
the most part however, such algorithms only serve to answer simple
queries, much as SQL statements do in traditional relational schemas.
Our main interest lies in data mining operations, that is, algorithms
and techniques that exploit the self-referential nature of the data to
provide new knowledge from, or insight to, the data. It is worth not-
ing that all the techniques we describe are also applicable on subsets
of the data, hence we will not consider variants of techniques that
run on subgraphs of our main graph. In this paper, when we refer
to the graph nature of this self-referential data, we will consistently
use the terminology vertices and edges. The term node will refer to a
node in the distributed database system, is used synonymously with
processor, and may imply a smaller granularity than the term site.

Different data mining techniques on self-referential data fall some-
where on a two dimensional continuum, where one axis represents the
granularity of data that we begin with, and the other axis represents
the granularity of data that we end with. It looks something like this:
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The lower left side represents those operations for which we al-
ready have some of the data values identified, and we want to find
related data values, for instance the values that provide a path from
one value to another. These basic algorithmic operations will be cov-
ered in section 3. The upper right side represents those operations
for which we do not begin with any particular data values, and which
provide general characterizations about the referential nature of our
data (meta-data). These operations will be covered in section 5. The
heart of our paper are the operations in the middle, that exploit the
self-referential nature of the data to either point to data items of inter-
est given the entire dataset, or generalize information about specific
data items. These operations will be covered in section 4. For each of
these, we will provide a few examples from sample applications. We’ll
conclude by suggesting future directions for research.

Before we concentrate on our specific area of interest, we will briefly
review several data mining systems from the literature. These serve as
a good overall introduction to the problem in which we are interested.
First, we examined some data mining clustering algorithms.

Clustering is the analysis of data points, each having several at-
tributes, in order to group the data points so that points within a
group are similar to each other and points in separate groups are dif-
ferent from each other. Two representative clustering algorithms are
CLIQUE [?] and MAFIA [?]. CLIQUE and MAFIA are algorithms
designed to detect and analyze clusters of data points in repositories
of business data (data warehouses) and in large-scale scientific data
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such as satellite images. These data sets have the property that data
points have many attributes, thus the number of dimensions in which
”distance” between data points are measured may be quite large. The
problem of finding clusters increases in complexity as the number of
attributes, or dimensions, increases, and decreases in complexity as
the granularity of the data attributes decreases. However, as granu-
larity of the attributes increases, the accuracy of clustering algorithm
suffers.

CLIQUE uses an n-dimensional grid, where n is the number of
attributes per data point, and fixes the grid’s granularity in each di-
mension by scanning the data points for clusters in each dimension.
The grid is built dimension-by-dimension, or one attribute and related
dimension at a time, using a pass over the data for each dimension.
Density along a dimension k is determined at each pass by using the
previous k − 1 dimensions and a lexicographic ordering of the k’th
attribute of the data points. The k’th grid interval is then selected so
that the grid lines would be placed in such a manner as to break up
the fewest clusters from the previous k − 1 passes. The running time
of the algorithm is exponential on the highest dimensionality of dense
clusters in the data set, so the authors apply various pruning methods
to speed processing. No provision is given in [?] for distributed data
processing.

MAFIA is based on CLIQUE, however the authors note that some
of the pruning methods used in CLIQUE may destroy cluster infor-
mation in clusters that are not apparent until later passes through the
data points. Instead, they use an adaptive grid size instead of a fixed
grid size, so that a cluster is not split arbitrarily by grid lines. This is
done by looking at adjacent ”bins”, or groups separated by a grid line,
and merging groups if they contain a minimum threshold of similar
data points. If this process results in a single bin along that dimen-
sion, the dimension is considered as not contributing to a cluster, and
can be ignored. Reducing the dimensionality of the cluster greatly re-
duces the processing time. The authors of [?] consider parallelism in
the context of Single Program Multiple Data (SPMD) environments,
and show that their algorithm scales well in distributed environments.

However, both the CLIQUE and MAFIA algorithms deal mainly
with data that is multi-dimensional but not self-referencing. Other
algorithms we examined [?, ?] have this same feature. They make no
attempt to use closely correlated data elements to discover patterns
between distant data points in their data sets.
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Another area we examined is mining textual data, such as in li-
braries or collections of survey or questionnaire data. Information
Extraction is the discovery of knowledge in unformatted texts, such
as from books in libraries. Text Mining is the analysis of organized
natural language data for knowledge discovery, such as data from sur-
veys. Two systems we examined are DiscoTEX [?] for information
extraction and MedLEE [?] for text mining. These two problems are
similar and interesting because of the almost unlimited way text can
be organized and ideas expressed.

DiscoTEX (for DISCOvery from Text EXtraction) uses informa-
tion extraction and traditional knowledge discovery techniques to dis-
cover a set of rules applicable to a particular corpus of text to then
allow generating a more structured database from the original data.
This structured database can then be mined using text mining or
other data mining techniques. MedLEE (for Medical Language and
Encoding System) is used at Columbia-Presbyterian Medical Center
to process clinical narrative reports to generate a database which can
then be mined. The reports are free form, and contain a limited set
of very specific terms that can be associated with other terms with a
high degree of accuracy; for example, ”mild pulmonary vascular con-
gestion” has an exact medical meaning. These exact terms may be
interspersed with other terms that might not carry specific meaning
to the general medical community, such as examination times or room
numbers. Mining these resulting databases involves creating rules for
determining associations among the data, for example, interestingness
rules [?] like A → B where A and B are facts and the association in-
dicates the probability that both A and B are true in the same data
field. A high association would indicate an interesting relationship.

Text data are usually either unrelated or related in an externally
known, fixed manner. Little internal relationship data exists within
the data themselves, so this work, while interesting, contributes little
towards our goal.

2 Applications

2.1 Network Intrusion Detection

When mining network connection logs, we semantically have a table
that is horizontally fragmented across multiple sites. This table stores
information about each network connection (such as a TCP/IP con-
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nection) to or from that site. This table includes information such
as the source and destination addresses of the traffic, the time the
connection started, the duration of the connection, number of bytes
transferred, and application protocol used. While much useful knowl-
edge can be gained using traditional, data item-centric data mining
techniques, we can exploit the source and destination addresses in the
connection data to gain additional insight by virtue of examining the
traffic flow. Such an approach has already been done by GrIDS, which
identified malicious activity by matching the traffic flow to a signature
which was represented as a subgraph [33]. A trivial example of this is
that an outgoing FTP connection from a local client to a suspicious
IP address 1 may not be worrisome in and of itself, however if that
connection occurs shortly after a suspicious incoming SSH connection
to the same client, there may be more cause for alarm. Of course, a
simple example such as that can likely be found through the derivation
of frequency episode rules. More complex sequences involving an in-
truder first compromising a machine in the DMZ, using that machine
to access a protected client, and finally to a trusted internal server,
would be easier to derive when using the self-referential aspects of the
data rather than just treating it as episodic. The distributed nature
of this problem can be seen if the logs for the DMZ firewall and the
internal firewall are stored in separate databases, possibly at different
sites across the enterprise.

2.2 Genomics processing

Another booming application area for distributed database systems
is in the storage of genomic data. An interesting aspect to genomic
data is that it contains a great deal of redundancy, and only a small
portion of it is actually used for coding protein sequences. The rest
(approximately 97% of the human genome) is called non-coding se-
quences, and seems to contain meta-data concerning what protein
sequences should be active for a given cell, and provide integrity in-
formation (the equivalent of computers’ error checking and recovery
bits). For the most part however, the exact structure and purpose
of the non-coding sequences is not well understood [?]. It may be
useful to store the genome data in a self-referential way such that
known structures (such as protein sequences) can be connected. This
would allow researchers to find the similarities and differences in the

1For example, an IP address that does not reverse resolve to a DNS name.
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non-coding sequences or known coding sequences between pairs of pro-
tein sequences, either stored redundantly from the same organism or,
more likely, between different samples of the same organism or differ-
ent species of organisms. In particular, this would more easily allow
researchers to track a genome through the evolution of a species, and
in the process provide insight to the purpose of genetic sequences that
were not previously understood.

2.3 Knowledge Discovery on the World Wide
Web

In searching for knowledge on the World Wide Web, we can often lever-
age data on the structure of the pages (what pages they refer to and
what pages refer to them). This is the basis of the Google PageRank
algorithm [5]. The PageRank of a web page roughly raises the more
web sites link to it. This can be problematic with some web sites
that are highly self-referential. Examples of this include the web sites
http://www.kuro5hin.org and http://www.advogato.org/. Both
of these sites contain many links back to themselves on almost every
page on their site. Users of these sites post stories and comments to
the sites, which other users may read and comment on. Each com-
ment and story include many links: to the author’s information, to
the comment itself, to reply to that comment or story, to score the
comment, and a standard navigation set of links to other parts of the
sites. In the case of large stories with many comments, some pages
may get upwards of 1000 links to other pages on the same site.

Another source of highly referential data on the web is web logs.
Web logs form a very large and self-referential subgraph within the web
that can also complicate the ranking algorithms. In general the web
log community is a community of sites that are updated roughly daily
with new links or comments about different subjects. It is common
for each web log to link to other web logs that the author identifies
with. It is not uncommon to see web logs with upwards of 30 links to
other web logs, all of which reference other web logs creating a deep
link structure, until the originating log is linked back to.

These highly referential sources of data on the web can cause prob-
lems with ranking algorithms such as PageRank which can get biased
by a type of network effect or group think. When one idea or topic
is raised on a site it can automatically show up as a very highly rep-
utable source for information by counting links, though it may not be
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a good source in actuality. In this case, we can use outliers to find
all of the information that matches a specific search, but doesn’t fall
within the standard cluster of self-referential data. This idea in terms
of network intrusion detection is discussed more in section 4.2.

Information about communities on the Internet can be found by
examining these graphs. By examining the section of the graph with
large amounts of web logs, you can find groups of web logs that all
roughly keep together. By examining the nature of the cluster, you
might find the most “important” web log in the bunch, thus showing
the user that is the most highly regarded by the rest of the cluster.
How that cluster interacts with other clusters of web logs allows you
to derive still more information, such as political views, or the number
of web logs shared between clusters.

3 Basic Algorithms

When working with large distributed graphs, it would be naive to
throw out all of the current work in graph traversal. In this section
we will cover the standard graph searching algorithms, and their lim-
itations in a distributed setting. It should be noted that with the
size and type of the graphs that we are discussing in this paper, it
would be foolish to create the whole graph outside of the already re-
lational or other representation of the data. The amount of data to
store would be roughly doubled and the gain in ease of searching and
implementing would be minimal. Most of the following algorithms can
be executed even without an actual “graph” to work on, as parts of
the graph can be generated as needed.

One of the most difficult parts of creating and using distributed
graph algorithms is that the centralized counterparts are often inher-
ently sequential. This is to be expected though, as these algorithms
need to keep track of all of the vertices that have been seen and where
to go next, which is hard to do reliably and quickly without a cen-
tral repository of knowledge. Also when these algorithms start being
distributed, duplication of effort needs to be considered. In the case
of distributed BFS and DFS, the distributed versions might produce
different graphs than the sequential versions because of the vertices
being visited in a different order than with the centralized version.

Another aspect to think about when designing distributed graph
algorithms is whether or not the graph is weighted or unweighted, and
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if it is directed or undirected. Based on our example applications, the
following algorithms will focus on the directed and unweighted case.

3.1 Basic Graph Searching

There are four basic graph searching algorithms we will cover in this
paper: breadth-first search, depth-first search, shortest path, and all-
paths. Which to use depends on what you want to find out. BFS and
DFS are the most basic, but they can be used to create the shortest
path and the all-paths algorithms, which provide more information.

BFS The Breadth-First Search (BFS) algorithm in its centralized
form is an algorithm for crawling and mapping the entire graph from
a single starting point. First a vertex is chosen as the root vertex (or
starting vertex). Vertices are added to the graph (in the undirected
case) by first finding all vertices of distance 1 from the root vertex and
adding them to the to-be-processed queue. Then each vertex in that
queue is processed and each of its children are added to the queue,
and so on until all vertices have been found. This algorithm finds all
vertices at distance n away before it finds vertices at distance n + 1,
until all vertices have been reached. This will prove to be one of the
more useful algorithms in distributed graph searching as described in
this paper, and thus it will have the most space accorded to it.

Some work that has covered this before includes [35, 36]. Tel men-
tions that because of the queue data structure used in the sequential
BFS algorithm, it is very difficult to distribute [36]. He proceeds to
caution against using BFS in a distributed setting, if possible. Re-
gardless of his warning, there are some distributed algorithms for it
that he describes. These algorithms are almost exactly the same as
the sequential BFS, with the difference in how information is passed
around about each vertex. In the centralized case the program run-
ning the algorithm knows all about which vertices have been visited
and when, and where to search next. In the distributed case (and
specifically in Tel’s examples) each vertex is at a different site, and all
information gets distributed through message passing. This changes
the main cost of the algorithm from the number of vertices, to the
number of messages passed between nodes. This will be a common
theme in these distributed graph algorithms as you will see in later
sections.

Another method is to parallelize the searching of each vertex’s
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subtrees. The change to the original algorithm would be to assign
each vertex found by the first iteration to another processor2. Each
processor would be given essentially the command of “start a BFS
from vertex k and report the results” where k would be one of the
vertices found in the first pass of the vertices off of the root vertex.
This procedure could be duplicated as each list of children is found,
until all of the processors are used.

A problem can arise with this approach: duplication of effort. How
do you ensure that each processor in the algorithm doesn’t search parts
of the graph that have already been searched by another processor?
There are two approaches to this, depending on how much information
can be stored with each vertex. The first is to mark each vertex as
visited when it is first happened upon in the algorithm. This makes
the implementation of this algorithm very easy, but it takes up much
more space. Also it introduces issues as in what happens if multiple
BFSs are occurring at once, how do you tell if a vertex has been marked
from one or the other? To finish the algorithm, each processor would
send the results of its search to its parent, when it has exhausted its
search space. The root processor would contain the whole BFS tree
when the algorithm was finished.

A second approach is to have each processor report back to its
parent processor the vertices that it has found in each iteration of the
algorithm. The processor would have to report back the vertices it
finds anyway at the end of the algorithm, so this incremental noti-
fication would not be too large of an addition. After each iteration,
the parent processor would receive the list of vertices that its children
have found, and process the lists in the order that it dispatched the
processors (that is, the order that it found the processor’s starting
vertices). It would report back to its children the list of vertices that
earlier searches already found, and that they should discard. The
child processors would take this into account and remove those ver-
tices from their search lists. After a processor has searched all of the
vertices in its part of the graph, it would send its results back to the
parent processor which would merge them in with the results from
its other child processors. This would continue until the entire resul-
tant search tree resides at the root vertex. This approach, though it
would take less memory storage at each individual node, would require
much more messaging overhead between the different processors. As

2The term processor is used here to represent individual agents of a search program, or
individual processors in a machine. The exact meaning would be implementation specific.
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with most problems in Computer Science, the solution is a trade-off
between space and running time. Variations of the two algorithms
can be developed that would return only the paths to the vertices
that found the particular search term can be developed as well. This
would greatly benefit the space usage, as the whole graph would no
longer need to be returned.

A problem that can arise in distributing this algorithm is that the
resultant graph in most cases will not end up looking the same as the
graph from a purely sequential algorithm. In the parallel version, ver-
tices will be visited in a different order, and thus whole subtrees could
end up on different parts of the resultant tree. The work described
above describing duplication of effort can fix this problem, however.
In the latter approach utilizing message passing, each processor runs
symmetrically (or can be made to) with the other processors for each
level of the iteration. The root vertex of each processor gives favoritism
to vertices discovered by the earlier child vertices, so that the vertices
will fall into the tree in the same place they would with the sequen-
tial version. If the algorithm is implemented by marking vertices, the
solution is a little more complex. Because each vertex is essentially
first-come first-serve, the graph could be changed dramatically by a
very fast processor searching the whole graph quickly. A solution to
this is to store the depth that each vertex was found along with the
marker. If this vertex was found by a processor at a depth deeper than
the one the currently running processor is on, it claims the vertex as
its own and notifies the vertex’s previous owner.

There is one limitation of these algorithms as described that the
astute reader may have picked up on. Strictly as described above, a
new processor is used for every vertex found, and the original processor
just waits idly until it gets responses from its children. The solution to
this is described in [11] for distributed DFS, but it can be applied just
as easily to distributed BFS as well. This is described more in-depth
in the paragraphs on Load Balancing on page 13.

Applications of a distributed BFS is readily apparent given the
example in the introduction of mining log data for intrusion detection.
A situation can be imagined where an intrusion was made by a certain
IP address to a certain host on an operator’s network. To see how
many other hosts this attacker might have gained access to, it would
be useful to use the access logs of hosts on the network as the basis for
a BFS on the entire network to see how many hosts on the network
this attacker probed, starting from the compromised host. Direct
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application of a distributed BFS would be uncommon though. More
often it would be used as a basis for another algorithm like shortest
path or all-paths to convey more useful information.

DFS The Depth-First Search (DFS) algorithm is essentially the op-
posite of the BFS. It is an algorithm for searching a graph structure
by traversing the graph to the farthest reaches possible from a starting
vertex’s edge, before trying another edge off of that same vertex. More
than a few papers have described work in distributing this algorithm:
[11, 25, 35, 36].

[36] describes a few distributed algorithms for DFS that make
heavy use of message passing, and some optimizations for them. The
optimizations focus more on lessening the number of messages passed
and less on parallel computation, and accordingly the algorithms he
describes are mainly sequential and similar to the centralized case, but
with message passing added in.

[11] describes and references quite a few algorithms for paralleliz-
ing DFS on Multiple-Instruction Multiple Data stream and Single In-
struction Multiple Data stream computers. Though his paper doesn’t
describe distributing these algorithms across multiple computers in
a shared nothing configuration, we don’t believe it would take much
effort to make that change utilizing some sort of message passing al-
gorithm.

With these two approaches, the two main difficulties with dis-
tributing DFS arise from the message passing overhead between all
of the different sites and load balancing. Trees generated by DFS can
be very imbalanced, and this can prove detrimental for naive paral-
lel algorithms. An example of this is a tree where the root has two
children, one makes up a subtree of one element, the other has thou-
sands of elements. If the algorithm only assigned the processing based
on those two children, one processor would finish almost immediately,
while the other would take much longer.

Thus there needs to be some load balancing between the different
parts of the search to minimize communication and maximize proces-
sor utilization. The main method described in [11] for fixing this load
balancing problem, is to divide the algorithm into two parts (outside of
the basic sequential algorithm): task partitioning and subtask distri-
bution. Task partitioning is concerned with the optimal partitioning
of the subgraphs to keep all of the separate processing nodes busy as
much as possible. The two main methods for this are stack splitting
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and vertex splitting. Vertex splitting works by giving vertices to other
processors that the current processor has come across but hasn’t got-
ten around to searching yet, while sticking to the search ordering of
DFS (that is, the processor gives the vertex that was most recently
happened upon but not searched). Stack splitting gives other proces-
sors a part of the set of all vertices that the current processor has seen
but not had the time to search yet. As one can see these are similar
approaches that mainly differ in the size of the work partitioned. Sub-
task distribution is concerned with when to partition, and once the
work has been partitioned where should it go to be processed. When
to partition can be decided on-demand (processors request to get more
work from other, busier, processors) or assigned (the processor doing
all the work decides when it has too much, splits it up and sends it off
to some idle processors). But before work can be distributed, it must
know where its going. Two similar solutions present themselves here:
processors that ask for work can get it, or the processor that does the
partitioning can assign the work.

In the case of a distributed graph based data structure, the solu-
tion of having the main processor (the one doing the current round
of the DFS) decide when to split and who to send it to seems the
most feasible. In many cases large parts of the graph would reside on
different sites. A search would start on a root site, who would start
the DFS at the desired vertex. When the next vertex to be searched
is on a different site, then that processor would send a message to
the other site of the form “start a DFS at vertex t on your site and
give me the results.” After sending the message, it could continue the
DFS from the last vertex it searched on its own site. As you can see
this is quickly running into the problems discussed (and solved) in the
BFS section, page 10. We refer you there for more information on
duplication of effort.

This has a similar application as BFS to graph based intrusion
detection. In fact the DFS and BFS will both give the same results,
in a strict searching sense. It is for this reason that the difference of
when to use BFS over DFS is mainly an implementation issue. Its
hard to imagine a case where the operator of this intrusion detection
system would really mind what search was used, unless the graph was
extremely swayed such as to be optimized for a particular algorithm.

Shortest Path Given two vertices s and t, find the shortest path
between them. Because we’re focusing on unweighted directed graphs,
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the shortest path problem is much easier to solve. In the unweighted
problem, the shortest path from one vertex to another can be deter-
mined by a simple BFS [32]. Starting from vertex s, do a distributed
BFS until vertex t is found. That path is the shortest path between the
two vertices. Thus the work presented earlier in section 3.1 on page 10
can be leveraged to provide an optimal solution to this problem. This,
of course, relies on the graph resulting from the distributed BFS to be
the same as the graph resulting from a sequential BFS. Methods are
described in the earlier sections to ensure that.

In application to distributed intrusion detection, this algorithm
could be used to find a path of logins between two hosts in a network,
where one host would represent a server that has been broken into,
and the other host would represent a server with important data such
as a source repository or customer data. When used in this setting it
is quite possible that the shortest path between two hosts in this case
would be through the system administrator’s computer. Assuming
the system administrator trusts himself, he would need to find results
that don’t include his computer. This is where constraints come into
play.

Constraints can be used to limit the search results to data that is
more useful. As the previous example showed, one method might be
to find the shortest path between two vertices while ignoring the sys-
tem administrator’s workstation. Another might be to constrain the
search to include a router or host that is suspected of being insecure
in the first place, to narrow the search space and get faster results.
As far as the algorithm design goes, a constraint requiring that a cer-
tain computer not be in the shortest path would result in the BFS
algorithm treating that vertex as if it didn’t exist. For ensuring that
a specific vertex q was in the results, a BFS can be run from s to q
and then from q to t. The concatenation of these paths would give
the shortest path from s to t through q.

There is a method to speed up the shortest path computation as
well: run the distributed BFS in parallel. Start two BFSs at the same
time, one from s searching for t, and one from t searching for s. There
would need to be some extra logic to make sure that both BFSs were
aware of each other, probably by message passing to make sure that
they didn’t duplicate effort. In the best case it appears that both
searches would meet in the middle, roughly halfway between s and t.
This would give a rough speedup of about 2 times depending on the
number of messages passed between sites, which could probably be
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minimized to one per round of BFS.

All-paths This algorithm returns all paths in a graph between two
vertices. It is useful in the case that the shortest path doesn’t give
you enough or useful information. I.e. the shortest path between two
workstations is google.com, which isn’t useful from a network security
standpoint (one could assume that there was no attack originating
from google.com3). Thus you find all paths between the two vertices,
and look through them to find suspicious ones.

Generally this algorithm would give much too many results for
one person to handle, so you would use constraints to make this re-
turn more relevant results. For example, return all paths between
these two computers, ignoring connections to google.com and por-
tal.examplesubnet.com, and only paths of length less than 5 comput-
ers. The latter constraint is one of the most useful, and reduces the
all-paths problem to the k shortest paths problem — Find the k short-
est paths between two vertices in a graph.

[10] describes a relatively easy method to find the k shortest paths
by using BFS (again!). Though his description is for a digraph, it can
be expanded to arbitrary graphs as well. By executing a simple BFS
on the graph and keeping track of the paths found to each vertex in
turn as the graph is explored, you can find all paths to a particular
vertex in the same time it takes to do an exhaustive BFS. Since you
would most likely constrain the algorithm to the k shortest paths,
then you could stop after k paths were found. This algorithm would
probably benefit the most by the vertex-marking BFS algorithm de-
scribed earlier, because the first processor to find a vertex with k − 1
marks would be the kth mark, and thus could call for the end of the
algorithm and all processors would send their found paths back to the
root vertex.

3.2 Min-cut

The minimum cut algorithm (also referred to as the maximum flow
problem) is concerned with finding the set of vertices or edges that,
when removed from the graph, cause the graph to be partitioned into
two disconnected sets. This has many applications. In genomics, this
could be used to find the gene that would cause the most change in an

3It is up to the reader to decide if thats a good network security policy or not.
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organism when removed or mutated. In network intrusion detection,
this information can be used as an assurance measure to make sure
that there is only one way out of your internal network. While that
might seem like a contrived case, think about the possibility of an
employee having an ISDN line or modem into their work computer, so
that they may easily work from home. If they’re not careful, its very
easy to bridge the networks with their workstation. The minimum cut
algorithm can be used to find cases such as these.

The general case for the graph minimum cut is an NP-hard problem
[8]. The subject has spawned a number of approaches dealing with
heuristics to estimate the minimal cut of a graph, some of which are
described in [13]. Neither of these papers reference the distributed
problem. Luckily we can get almost all of the information we need
out of the much easier to solve (runs in polynomial time) case where
we need to find the minimal cut between two vertices s and t. For
example, to make sure that there is only one path out of your network,
the operator could choose a standard workstation on the interior of
the network and one on the exterior, and find the minimum cut of
them. If the minimum cut is greater than one, then there is more
than one way into the network and the cut vertices (or edges) need to
be examined.

Two of the simplest solutions to this problem leverage work in
earlier sections on distributed graph algorithms. The first method
is to perform the All-paths4 algorithm between the vertices s and t.
Once all of the paths have been found perform a min-cut analysis on
the resulting subgraph. Since the list of all paths between the vertices
will likely be much smaller, it would be possible to run a brute force
analysis on the results, to find the minimum cut.

The other method is to find all the shortest paths between s and t
and perform a min-cut across those paths. This can be done in time
n for a path of length n by examining the number of vertices or edges
at each shell level away from s or t and picking the shell level with
the smallest number of vertices or edges to remove from the path.
Then repeat for the next shortest path between s and t, until there
are no more paths from s to t. The set of vertices or edges that were
removed make the minimal cut set. If the maximum non-cyclic path
length from s to t is m, the run time of this approach is O(mn).

Finding the min-cut based on vertices or edges is application spe-

4Or the k shortest paths
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cific. For instance, you might want the vertex minimal cut into your
network to be one (your company firewall) whereas you might want
the edge minimum cut to be no less than three (redundant Internet
connections all feeding into your firewall).

4 Mining for New Knowledge

The algorithms that we are most interested in are those that will
provide us with new, detailed knowledge given very little initial input,
beyond the set of self-referential data. Essentially, we are looking for
techniques that will provide us with new insight into our data, with
a minimum amount of work on our part. Of course, as with much
data mining, these algorithms can be expected to produce a lot of
information that is taken as common knowledge to the users, and
much more that is completely spurious. Much work can be done on
providing constraints to the algorithms to limit such results, however
we do not address such techniques as research in that area is premature
given the infancy of research in the core area, and such techniques are
almost always domain (application) specific.

Much of the work in this section is in its infancy, not only in
distributed systems, but in general. Given the proliferation of dis-
tributed, self-referential data sets and the potential for high-payoff
from these techniques for knowledge discovery, it is our assertion that
these techniques should receive more attention. This section will cover
what work has been done thus far on each technique, our thoughts on
approaches to applying the technique in a distributed setting, and
examples of how the techniques could be useful in our example appli-
cation areas.

We begin by looking for patterns in the graph formed by the self-
referential nature of the data, then we consider the detection of data
points that fall outside expected patterns (outliers). Next we consider
the identification of important data points. Finally, we look at two
techniques related to clustering: finding sets of generally related data
points, and finding groups of strongly connected data points.

4.1 Frequent Subgraph Identification

Given that our data is self-referential, some of the most interesting
knowledge that we can discover are frequently reoccurring patterns in
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that data. This is generally known as frequent subgraph identification.
Work in this area developed out of general graph algorithm research
and progressed slowly for a number of years, advancing to the point of
Chen and Yun creating an algorithm for finding the maximum com-
mon subgraph based on maximum cliques and graph coloring [6]. This
area has started to receive more attention when researchers found the
need to perform data mining on large sets of graph-based data, in par-
ticular the composition of chemical compounds. In these datasets they
have multiple data items, each represented by a graph, and they want
to find the similarities between them. Inokuchi et al built an algo-
rithm to do this based on Agrawal’s apriori-based method for mining
association rules [14]. Kuramochi and Karypis then built a similar
algorithm which appears to be more efficient and scalable [22]. The
important thing to note about these algorithms is that they assume
that each data item is an entire graph, independent from all the other
graphs, whereas in our dataset, each data item is a separate vertex,
and will likely be connected to others.

The first task that needs to be considered is how these algorithms
can be extended to work on a single graph of arbitrary size and con-
ductivity. It seems to us that the apriori-based approach has merit.
The key here is that, instead of starting with n arbitrary graph-based
data items, we should start with subgraphs anchored at each of the n
data items. Knowing that a single edge is not an interesting subgraph,
we can begin with a double-edged structure, where the connecting ver-
tex can serve as the anchor. There are then four possible edges that
can be added to build a three edged subgraph (one from each of the
vertices, or one connecting the two end vertices). One can easily see
when adding a fourth edge, for which there are 16 possible combina-
tions of vertices and edges, that the enumeration of subgraphs grows
exponentially with the addition of new edges. Intuitively, the only way
to identify which subgraphs of m edges exist in our graph is to enu-
merate over them, implying that this operation is NP-complete. We
can probably optimize the operations somewhat by eliminating gener-
ally useless structures, however such approaches are almost certainly
application specific. For instance, in some applications, a subgraph
where every vertex has only one or two edges (a line essentially), may
not be of any interest, whereas in others it might be. At the same
time, one must be careful how this operation is done because if the
expansion of possible subgraphs is represented as a tree, pruning the
tree of a “useless” structure to far up may preclude the generation of
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a more useful structure. For example, a loop of p edges is only a line
of p− 1 edges until the last edge is connected.

Fortunately, some of the computational intensity of the problem
may be alleviated by virtue of operating within a distributed database
system. That said, we’re left with the problem of how to actually im-
plement the algorithm in such a setting. We will assume that the
subgraphs may extend further into the data present on other nodes
than we can reasonably store as ghost vertices on this node. Exam-
ining the two usual approaches, migration of data or migration of
computation, it seems that migration of computation would be more
efficient. Consider the case where we need to determine if a vertex on
another node is part of a subgraph structure that forms a triangle, yet
in actuality that vertex is connected to 1000 leaf vertices. If we do the
calculation by migrating the data, we’ve just copied the information
on 1000 edges and vertices for no good reason. If instead, we send a
message to the other site asking if vertex v was part of a structure
v1 → v2 → v3 → v1 and the remote site responded with either a
one (yes) or zero (no), we’ve gotten the same answer, done the same
amount of work (just at different sites), and transferred a lot less over
the network.

One problem with finding frequently occurring subgraphs in a large
interconnected graph such as that formed by our self-referential data
is defining when two subgraphs are equivalent. This is a problem
because the structure of our graph is based on using a single vertex
to represent all occurrences of that value in the data. For example,
all instances of the IP address “1.2.3.4” will be represented by the
same vertex. As a result, we can not base our subgraphs on vertex
value matching. This leaves us with two possibilities: we can either
match using only topology information without using any values, or
we can match based on vertex type. The latter assumes that each
row in our tables contains both source and destination values, as well
as source and destination types. For instance, in web searching, we
may have HTML page x that is linked to PDF document y, hence
our database will need to capture that x is an HTML page and y is
a PDF document, then we could use this type information to do our
subgraph matching.

This technique will not likely provide any instant answers for any
application; in fact it will likely generate more questions. Fortunately,
the answers to those questions will likely provide a great deal of insight
into the dataset. For instance, one might find a pattern in a network
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connection dataset consisting of a line of hosts, each one forming con-
nections with the next, and a single host that connects to all of them.
Is that single host an attacker, systematically compromising each ma-
chine in the chain, or is that host a system administrator connecting
to all the hosts to administer them?

4.2 Outliers

At the opposite end of the spectrum from finding frequent patterns in
the data, is finding vertices that do not follow such patterns. These are
known as outliers. Much research has been done on detecting outliers,
which are typically thought of as data points that are inconsistent
with the other observed data, based on some measure of similarity
from each data point to the others. Shekhar et al decided to focus on
outliers where the similarity between vertices is determined based on
their graph conductivity rather than a Euclidean distance [31]. They
tested their algorithm on a dataset of automobile traffic data and were
able to readily identify a number of anomalies in the dataset. They
provide a rather detailed analysis of the I/O performance of their
technique. Central to their technique is the application of a graph
clustering method, which we will discuss in more detail in section 4.4.
A natural approach to applying this outlier detection technique in the
distributed realm would be through the application of a clustering
technique designed to operate on distributed data, and then to allow
each site to identify those data points assigned to them which appear
to be outliers. Alternatively, since outlier detection is based heavily
on calculations involving close neighbors, each site should be able to
perform such detection using only one or two layers of ghost vertices.
In that case, the only communication that would be required between
sites would be to maintain the ghost vertices and combine the results
of the outlier detection.

Outliers are typically of interest in most applications. When ex-
amining network connection data, most attacks appear as outliers be-
cause the attacker must do something abnormal to gain access to a
system. In genome analysis, an outlier may represent a mutation,
or a unique protein sequence that serves a special purpose. In web
searching, outliers may represent pages that contain opposing view-
points and hence, are typically not linked to by other pages in a given
community.

Outlier detection could also be performed on the graph based on
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the directionality of edges. Specifically, disparities between the num-
ber of in-edges versus out-edges are typically of interest. For example,
in network connection graphs, vertices which only serve as the source
of connections are clients, and vertices that only serve as the desti-
nation of connections are servers. Hence, if a machine seems to be a
client (has a large number of out-edges), yet it has maybe one in-edge,
that inbound connection is worth investigating.

4.3 Important Vertices

Most graphs have certain vertices that are particularly important. In
many cases, this importance is due to that vertex having a high degree
of conductivity with other vertices throughout the graph. Graphs that
are formed based on a power-law distribution (see section 5.3 naturally
form these so-called hubs. In many cases, these vertices are essential
to the conductivity of the graph, and their elimination will cause a
discontinuity in the graph. For this reason, such hubs are typically
selected as part of a min-cut of the graph (see section 3.2).

The exact semantics associated with importance of a vertex is ap-
plication dependent. For this reason, the algorithms to calculate such
importance measures are application dependent as well. At the core of
most of these algorithms though is the notion of counting the number
of in-edges and out-edges for each vertex in the graph. Actually doing
this counting on each site in the distributed system is trivial: given
a modern RDBMS, a basic query with grouping and aggregation will
give us what we need. The trick becomes in combining all the counts
for each vertex together. Such a problem has long been present in the
parallel processing community, and is known as the reduction problem
[27, 18]. The Message Passing Interface (MPI) specification includes
specific calls in its API for taking an array of values on each node
and summing the individual elements together, saving the result in
an array on either one node (the ”root” node), or all nodes [27]. The
exact manner in which this is done is left to the implementor, who
will typically leverage any knowledge of the topology of the system,
and may even utilize specialized hardware to accomplish the task.

Even without the specialty hardware, we can likely leverage such
reduction techniques by using something like MPICH5 directly [12].
This, unfortunately, has two drawbacks: 1. The performance of MPICH

5A software-only portable MPI library
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for reduction operations in a widely distributed setting is lacking and
2. We need two arrays representing the counts for all vertices in the
entire system on every node. Kielmann et al address the first problem
with MagPIe, an extension to MPICH for optimizing performance in a
distributed setting by performing operations in a hierarchical manner
based on the proximity of nodes [18]. Since the source to MPICH is
available, and the source to MagPIe is apparently available, we can
address the second problem by modifying the reduction call to take a
hash instead of an array, with the understanding that if a node doesn’t
have a value, that value is zero. As the results are being tabulated
between nodes, a given node only needs to store the sum for a given
vertex if it already has that vertex. The exception is nodes higher in
the hierarchy, representing a cluster of computational nodes. While
they need to store the counts for all the vertices on all the nodes they
represent, a hash representation will probably still be more efficient.

When doing network intrusion detection, we typically separate
hosts into inside and outside sets. The inside hosts are those on our
network that we are monitoring and attempting to protect. All others
are considered outside hosts. We expect to see a number of hosts,
both inside and outside, with a large number of inbound connections;
as previously noted, these hosts are servers. We also expect to see a
number of inside machines with a large number of outgoing connec-
tions. These are our local clients. Now, when we see a see an outside
machine generating connections to a large number of inside machines,
they are likely scanning us, attempting to find vulnerable hosts that
they can attack.

Web searching represents the most popular application of utilizing
important vertices today. The popular search engine Google utilizes
an algorithm called PageRank which produces a score for every page
based in part to its conductivity to other pages, particularly the num-
ber of other pages that link to it [5]. This is based on the premise
that if a page has a high number of links pointing to it, then a large
number of other authors must have found it useful, so it must be good.

4.4 Clustering

We’re interested in operations that cluster vertices together based on
the self-referential nature of the data. The data can be clustered using
other methods such as Latent Semantic Indexing [24, 38], however that
is beyond the scope of this paper. Instead, we will focus on clustering
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vertices based on proximity, and on strongly connected subgraphs.

4.4.1 Partitioning

Partitioning of graphs is a widely studied problem as it is a vital
step in modern scientific simulations where an unstructured mesh,
represented as a graph, is partitioned such that different pieces can be
assigned to different processors. An optimal graph partition is one that
minimizes the number of edge cuts while maintaining a distribution of
vertices between partitions that is as close to even as possible. It is well
known6 that finding such an optimal graph partition is NP-complete.
Fortunately, we can find a close approximation, which is sufficient
both for load-balancing scientific simulations and determining what
vertices are related in data-mining.

Dobbelaere gives a nice survey of techniques for partitioning graphs
using parallel methods in [9]. He provides an excellent overview of the
field and explains some of the terminology and techniques, for instance
the Kernighan-Lin / Fiduccia-Mattheyses (KL/FM) algorithm. He
concludes that multilevel approaches to graph partitioning seem to
be the most promising [9]. One of the packages he looked at was
ParMETIS, which was specifically designed for doing parallel graph
partitioning, and was designed by Karypis, Kumar, and Schloegel at
the University of Minnesota. The approach ParMETIS takes to graph
partitioning is to iteratively coarsen the graph by collapsing related
vertices together until the graph is of a reasonable size7, such that an
optimal or near-optimal partition can be found. Then the graph is
iteratively uncoarsened, and refined using the KL/FM algorithm at
each iteration. This appears to result in an excellent partition in a
very short time [30, 29, 17, 16, 15].

For most applications, a basic partition such as described here
won’t provide much useful information. For network intrusion detec-
tion, we expect to see vertices partitioned roughly by the sites whose
logs they appeared in, and for genome processing, we expect to see
sequences from the same chromosome together. As noted in section
4.2, the real interesting knowledge lies in which data points are not
consistent with such a partitioning. Another area where partitions can
be useful is the refinement of results. For example, when searching for

6Which is to say that every paper on the subject notes this without citing the original
source

7Typically in the hundreds of vertices
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a concept on the web, it would be useful to eliminate all the results
from a partition that may represent a different concept with the same
name.

4.4.2 Strongly Connected Subgraphs

Graph partitioning, while useful, is inexact. It was designed primarily
for load-balancing graphs between computational nodes in scientific
simulations. While finding an optimal partition is NP-complete, a
graph may have multiple such optimal partitions. The difference be-
tween these optimal partitions may or may not have any semantic
meaning associated with it. Strongly connected subgraphs on the
other hand, are formally defined, so what we get is an exact answer.
Recall that a strongly connected subgraph is one in which there is a
path from every vertex to every other vertex in the subgraph. Finding
all such strongly connected subgraphs is fairly easy in a distributed set-
ting. Specifically, we can utilize the parallel DFS technique discussed
in section 3.1. When a cycle is detected, we union all the vertices
on that cycle, and any strongly connected subgraphs those vertices
belong to, together to form a new strongly connected subgraph.

Strongly connected subgraphs, unlike general graph partitions, are
typically of interest in applications. In network intrusion detection,
they typically indicate a trust relationship between the hosts in the
subgraph. A system administrator should be able to look at such a
subgraph and immediately identify any machines that should not be
present in such a relationship (and if the information on trust relation-
ships is stored in the database, the machine should be able to deduce
this automatically). In genome processing, a strongly connected sub-
graph may be indicative of a group of proteins with a similar function.
Likewise, in web searching, a user may identify a page of interest and
use the strongly connected subgraph for that page to find other closely
related material.

5 Characterization of the Overall Struc-

ture

Mining algorithms applied to self-referential graphs may yield infor-
mation about the nature of the information held in the graphs them-
selves. The results of mining deeper relationships, and analysis of the
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resulting graphs, will provide information useful beyond the discov-
ered data itself. For example, analyzing navigability from Web sites
will show related sites as being nearer, while those sites at greater
distances will be less closely related.

.

5.1 Navigability / Conductivity

Navigability of a graph refers to the likelihood that a path exists from
a vertex to another vertex. Conductivity is a measure of the number
of such paths that pass through any particular vertex. Analyzing the
navigability and conductivity of a graph resulting from application
of our algorithms to a distributed self-referential database may yield
knowledge about the importance or activities associated with a vertex
in the graph.

For example, in the genome example, a vertex with very high con-
ductivity may indicate that that a non-coding gene, represented in
that vertex, is associated with checking for correct production of a
protein that was created earlier in the evolution of that organism.
Less-connected vertices may show sequences that have arisen more
recently.

In the World Wide Web, the type of a vertex, and the types of
vertices it is connected to, may be a measure of the importance and
accuracy of the information on the site. Sites that are more impor-
tant will be referred to by many other sites, and these sites will be
referenced again by other sites. In addition, the lack of a path from
one site to another site may show that the sites are unrelated. Users
of the WWW may then use such path-related knowledge to tell that
a site is useful or not when trying to find information on a particular
topic.

5.2 Ontology induction

Ontology is the specification of rules for the knowledge of and re-
lationships between entities. The application of our algorithms to
self-referential data may yield clues to the relationships between the
vertices.

For example, in the PEOPLE table, creation of a fully connected
sub-graph indicates a nuclear family, each related to all of the others.
For example, a vertex has a ”father” relationship to two other ver-
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tices. We can induce that the two vertices will have either ”daughter”
or ”son” relationships to the original vertex, and that they will have
either ”brother” or ”sister” relationships to each other. From these
basic rules, we can create data-mining knowledge-discovery rules to
extract further information about the relationships between the indi-
viduals in the PEOPLE table.

For the network topology example, the type of the node indicates
what other types of nodes to which it can connect. For example, a
client node may connect directly to a router, or may only connect to
a switch, then a router. By analyzing the relationships between client
nodes and their neighbors, we can induce a set of rules that state what
types of nodes can be connected to what other types nodes. Again,
with these rules we can create other rules to mine knowledge from the
network data.

5.3 Distribution Identification

The variability of the number of edges going through each vertex in a
graph gives a good picture of the distribution of the graph. In homo-
geneous networks, where the number of edges per vertex is relatively
constant, failure of a single node will likely cause a small portion of the
graph to become disconnected. However, in heterogeneous networks,
such as the WWW, a small number of nodes are critical (see the dis-
cussion in section 4.3, Important Vertices). Loss of these nodes will
cause large portions of the graph to become disconnected. By analyz-
ing the distribution of the graph, we can learn about the vulnerability
of the network to attacks or to failures of a number of nodes.

Barabási, et al, in [1] discuss the resilience of networks to failure
or attack, modeling the World-Wide Web and a randomly generated
(exponential) network, showing that the Web is quite resilient to fail-
ure of a small set of nodes chosen randomly, but very vulnerable to
a deliberate attack on a small set of carefully chosen nodes. A ran-
domly generated homogeneous network is; however, much more likely
to break into disconnected subsections upon failure of a small set of
nodes. It is also equally vulnerable to a deliberate attack upon a small
set of carefully chosen nodes.

The distribution knowledge could be used to mine additional knowl-
edge from the graph. For example, in the genome project, the presence
of an important vertex could possibly indicate a critical gene, the mu-
tation of which would cause a serious problem.
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6 Open Problems and Conclusion

In this paper, we have examined the nature of self-referential data in a
distributed database system. We have looked at the breath of ways in
which the self-referential nature of the data can be exploited to gain
new knowledge, ranging from basic graph operations to general graph
characterization, with a focus on finding new knowledge with minimal
knowledge of the data. As much as possible, we have focused on the
distributed nature of such techniques. To illustrate the usefulness
of the techniques we’ve covered, we’ve included examples from the
application areas of network intrusion detection, genomics, and web
searching.

There is a great deal of work that needs to be done in this area.
Some of the techniques we’ve covered have barely received any atten-
tion in published literature and would be served by more research,
even in the basic centralized case. These areas are

1. Frequent subgraph discovery on large, connected graphs

2. Outlier detection in graphs

In other cases, research on techniques in the centralized case is
fairly well established, however there is a great potential for further
research on the technique in the distributed setting. These areas are

1. Breadth-first search

2. Finding the minimum cut between two points

3. Discovery of important vertices
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